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Abstract Predicting membrane protein type is a mean-

ingful task because this kind of information is very useful to

explain the function of membrane proteins. Due to the

explosion of new protein sequences discovered, it is highly

desired to develop efficient computation tools for quickly

and accurately predicting the membrane type for a given

protein sequence. Even though several membrane predictors

have been developed, they can only deal with the membrane

proteins which belong to the single membrane type. The fact

is that there are membrane proteins belonging to two or more

than two types. To solve this problem, a system for predicting

membrane protein sequences with single or multiple types is

proposed. Pseudo–amino acid composition, which has pro-

ven to be a very efficient tool in representing protein

sequences, and a multilabel KNN algorithm are used to

compose this prediction engine. The results of this initial

study are encouraging.

Keywords Pseudo–amino acid composition �Multilabel �
Feature extraction � Membrane protein type

Introduction

Almost all living cells are enclosed by membranes which are

composed of mainly lipids and proteins that play various

roles (Chou and Elrod 1999); for instance, membranes define

cell boundaries, maintaining the essential differences

between the cytosol and the extracellular environment, and

some of them offer the skeleton for the lipid bilayer mem-

brane. Membrane proteins can be mainly divided into eight

types (Chou and Shen 2007b): (1) single-pass type I mem-

brane, (2) single-pass type II membrane, (3) single-pass type

III membrane, (4) single-pass type IV membrane, (5) mul-

tipass membrane, (6) lipid-anchor membrane, (7) GPI-

anchor membrane and (8) peripheral membrane.

Knowledge about the type of a particular membrane

protein is very helpful because this kind of information is

highly correlated with its function (Nanni and Lumini

2008). Between 20 and 35 % of genes encode membranes,

whereas only 1 % of proteins are membrane proteins

whose 3D structures are known (Nanni and Lumini 2008).

Determining the membrane protein type through multifar-

ious biochemical experiments is not only resource-inten-

sive but time-consuming, so developing automated

methods for efficiently and accurately identifying the types

of given proteins is highly desired.

The prediction of membrane protein type is similar to

the problem of subcellular localization. Several different

types of subcellular localization predictors have been pro-

posed in the last decade or so (Chou and Shen 2006, 2007a,

2008, 2010b; Chou et al. 2011, 2012; Shen and Chou 2007,

2009, 2010a, 2010b; Wu et al. 2011, 2012; Xiao et al.

2011b, 2011c). Also, a series of classifiers and methods

have been developed to identify membrane protein

sequences (Chen and Li 2013; Chou and Cai 2005; Chou

and Shen 2007b; Nanni and Lumini 2008). All of them can
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only deal with membrane protein sequences in which one

sequence belongs to only one type. To the best of our

knowledge, no predictor can handle the problem that one

membrane sequence belongs to two or more than two

types. But these types of protein are also very important

because they may have some special biological signifi-

cance. Considering the fact that several predictors which

can deal with protein subcellular localization with both

single and multiple sites have been established, it is urgent

and meaningful to develop methods or predictors which are

able to handle membrane protein sequences with single and

multiple types.

In this article, we adopt a multilabel algorithm named

ML_KNN, whose basic consideration is a multilabel-based

K-nearest neighbor algorithm (KNN) derived from the

common K-nearest neighbor algorithm (Zhang and Zhou

2007) and pseudo–amino acid composition which has

proven to be a very efficient tool in representing protein

sequences to compose this new classifier. Application to a

rigorous benchmark data set shows that this prediction

model performs well, as an initial study on this new topic.

According to a comprehensive review (Chou 2011) and

as demonstrated by a series of recent publications (Chen

et al. 2012, 2013; Lin et al. 2012; Wang et al. 2011; Xiao

et al. 2011a, 2012), to establish a really useful statistical

predictor for a protein system, we need to consider the

following procedures: (1) construct or select a valid

benchmark data set to train and test the predictor, (2) for-

mulate the protein samples with an effective mathematical

expression that can truly reflect their intrinsic correlation

with the attribute to be predicted, (3) introduce or develop a

powerful algorithm (or engine) to operate the prediction

and (4) properly perform cross-validation tests to objec-

tively evaluate the anticipated accuracy of the predictor.

Below, we describe how to deal with these steps.

Materials and Methods

Data Set

The protein data set was taken from the UniprotKB/Swiss-

Prot database at (http://www.ebi.ac.uk/uniprot/) released in

June 2012. The detailed procedures are as follows: (1) open

the Web site at http://www.uniprot.org/; (2) click the button

‘‘Advanced,’’ select ‘‘Subcellular Location’’ for ‘‘Fields,’’

type in ‘‘single-pass type I membrane’’ for ‘‘Term’’ and

select ‘‘Experimental’’ for ‘‘Confidence’’; (3) click the but-

ton ‘‘Add&Search,’’ select ‘‘or’’ and repeat step 2 with the

only difference being that each of the following terms is

typed in once in order until all of them are used: ‘‘single-pass

type II membrane,’’ ‘‘single-pass type III membrane,’’

‘‘single-pass type IV membrane,’’ ‘‘multipass membrane

protein,’’ ‘‘lipid-anchor,’’ ‘‘GPI-anchor,’’ ‘‘peripheral

membrane protein’’; (4) click the button ‘‘Add&Search,’’

choose ‘‘and,’’ select ‘‘Fragment(yes/no)’’ for ‘‘Field’’ and

choose ‘‘no’’; (5) click the button ‘‘Add&Search,’’ choose

‘‘and,’’ select ‘‘Sequence Length’’ for ‘‘Field’’ and choose

the sequence length ‘‘C50.’’

CD-HIT software (Huang et al. 2010; Li and Godzik

2006; Niu et al. 2010) was used to exclude those sequences

which have more than 80 % sequence identity to any others

in the same membrane type group.

The information of this benchmark data set is listed in

Table 1.

Feature Extraction

Chou’s Pseudo–Amino Acid–Based Features

One of the most efficient methods to engender the sample

of a query protein P is the pseudo–amino acid composition

(Chou 2001, 2011; Shen and Chou 2008), which has been

widely applied to predict a myriad of protein attributes

(Esmaeili et al. 2010; Fan and Li 2012; Georgiou et al.

2009; Hayat and Khan 2012; Jiang et al. 2008; Khosravian

et al. 2013; Mei 2012; Mohabatkar 2010; Mohabatkar et al.

2011, 2013; Mohammad Beigi et al. 2011; Nanni et al.

2012a, 2012b; Niu et al. 2012; Xiao et al. 2006a, 2006b;

Zhang et al. 2008; Zia Ur and Khan 2012). In this study, we

also adapted this method to construct the query proteins.

The model can be divided into two parts. One part is just

its amino acid composition, which includes 20 discrete

numbers, each of them representing the normalized

occurrence frequencies of one of the native amino acids in

protein P. The other part is the pseudo–amino acid com-

position part, which takes advantage of the information

from the sequence order effect. The steps are shown below.

Table 1 Detail of the benchmark data set derived from Swiss-Prot

database according to the procedures described in ‘‘Data Set’’

Order Type Number of proteins

1 Single-pass type I 1,412

2 Single-pass type II 712

3 Single-pass type III 62

4 Single-pass type IV 105

5 Multipass 5,904

6 Lipid-anchor 980

7 GPI-anchor 328

8 Peripheral 4,513

Total number of locative proteins 14,016

Total number of different proteins 13,659

Of the 13,659 different proteins, 13,313 belong to only one location,

335 to two locations, 11 to three locations—i.e., total 14,016 locative

proteins
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Suppose a protein including L amino acid residues:

P ¼ ½Q1;Q2;Q3;Q4. . .;QL� ð1Þ

The sequence-order information can be indirectly

represented by the following equations

d1 ¼
1

L� 1

XL�1

i¼1

XðQi;Qiþ1Þ

d2 ¼
1

L� 2

XL�2

i¼1

XðQi;Qiþ2Þ

d3 ¼
1

L� 3

XL�3

i¼1

XðQi;Qiþ3Þ; g\L

d4 ¼
1

L� 4

XL�4

i¼1

XðQi;Qiþ4Þ

� � �

dg ¼
1

L� g

XL�g

i¼1

XðQi;QiþgÞ

8
>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>:

ð2Þ

In Eq. (2) the correlation function is defined by

XðQi;QjÞ ¼
1

3
f½FðQjÞ � FðQiÞ�2 þ ½GðQjÞ � GðQiÞ�2

þ ½HðQjÞ � HðQiÞ�2g ð3Þ

where F(Qi), G(Qi) and H(Qj) are the values of

hydrophobicity, hydrophilicity and mass, respectively.

There are also three types of value that can be used. Before

we use these values, a standard conversion described by the

following should be conducted:

FðiÞ ¼
F0ðiÞ �

P20

i¼1

F0ðiÞ
20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P20

i¼1

F0ðiÞ�
P20

i¼1

F0ðiÞ
20

� �2

20

vuut

GðiÞ ¼
G0ðiÞ �

P20

i¼1

G0ðiÞ
20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P20

i¼1

G0ðiÞ�
P20

i¼1

G0ðiÞ
20

� �2

20

vuut

HðiÞ ¼
H0ðiÞ �

P20

i¼1

H0ðiÞ
20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P20

i¼1

H0ðiÞ�
P20

i¼1

H0ðiÞ
20

� �2

20

vuut

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð4Þ

where F0(i) is the original hydrophobicity value of the ith

amino acid, G0(i) is the original hydrophilicity value of the

ith amino acid and H0(i) is the original mass value of the

ith amino acid side chain. These data were achieved from

the Web server PseACC (Shen and Chou 2008). We use

numbers 1–20 to denote the 20 native amino acids

according to the order of their three-letter names: Ala (A),

Arg (R), Asn (N), Asp (D), Cys (C), Gln (Q), Glu (E), Gly

(G), His (H), Ile (I), Leu (L), Lys (K), Met (M), Phe (F),

Pro (P), Ser (S), Thr (T), Trp (W), Tyr (Y), Val (V).

Then, a sample protein P can be represented as

P ¼

q1

..

.

q20

q20þ1

..

.

q20þg

2

666666666664

3

777777777775

ð5Þ

where

qk ¼

tk
P20

i¼1

ti þ l
Pg

j¼1

dj

; ð1� k� 20Þ

ldk�20

P20

i¼1

ti þ l
Pg

j¼1

dj

; ð20þ 1� k� 20þ gÞ

8
>>>>>>><

>>>>>>>:

ð6Þ

where l is the weight factor, which was set at 0.5 (Chou 2005;

Chou and Cai 2005) and 0.05 (Chou 2001); tiði ¼ 1; 2; . . .; 20Þ
represents the normalized occurrence frequencies of the 20

amino acids in the sample protein P; and djis the j-tier

sequence-correlation factor, computed according to Eq. (2). In

this article, we chose l = 0.05, g = 20 after careful consid-

eration of easy handling; they can be assigned other values, of

course, but the impact on the result would be small.

Algorithms for Classification

ML_KNN

In this article, we follow the notations used by Zhang and

Zhou (2007). Define I = Hd as the input vector space, C ¼
f1; 2; 3; . . .;Cg as the set of C possible labels and Z ¼
fðqi; tiÞ; 1� i�Ng as a train set in which qi 2 =; ti � C,

usingZ to train the multilabel classifier. Usually, the learning

model will output a real valued vector based on the function

g : = � C) H. Considering qi and its corresponding label

set ti, g(*,*) has the character of gðqi; c1Þ\gðqi; c2Þ when

any c1 62 t1 and c2 2 t2. Apparently, the result yields larger

values for labels belonging to ti rather than those not

belonging to ti. On the side, we use rankg(qi,c) to represent

the ranking function derived from g(qi,c) which outputs the

rank of c(c 2 C). Clearly, the larger value of g(qi,c) corre-

sponds with the higher rank of c. The multilabel classifier t(*)

can also be computed by g(*,*) as tðqiÞ ¼ fcjgðqi; cÞ[
uðqiÞ; c 2 Cg, where u(*) is a threshold function usually set

to 0 for easy handling.
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The KNN used here is considered in the multilabel way

(Zhang and Zhou 2007). Considering an instance q and its

corresponding label set C0 � C, let fq
!

be the full category

vector for q, in which its jth component, fqðjÞ
��!
ðj 2 CÞ, takes

the value of 0 if j 62 C0 and 1 otherwise. Moreover, we use

L(q) to represent the set of K-nearest neighbors of q

computed in the training set, so an element counting vector

can be set as

NqðjÞ
���!

¼
X

d2LðqÞ
fdðjÞ
��!

; j 2 C ð7Þ

where NqðjÞ
���!

computes the number of neighbors of q asso-

ciated with the jth label.

As for each test vector p, its K-nearest neighbor, L(p), is

computed first. Let Gj
0 represent the fact that p has no label j

and Gj
1 otherwise. In addition, let F j

i ði 2 f0; 1; 2; 3; � � � ;KgÞ
express the fact that there are exactly i examples that have

label j among the K-nearest neighbors of p. Thus, given the

element counting vector Np
�!

, the category vector fpðjÞ
��!

can be

determined as follows:

fpðjÞ
��!
¼ arg max

a2f0;1g
P Ga

j jF
j

NpðjÞ
���!

" #
; j 2 C ð8Þ

According to the Bayesian rule, Eq. (8) can be

represented by

fpðjÞ
��!
¼ arg max

a2f0;1g
PðGa

j ÞPðF
j

NpðjÞ
���!jGa

j Þ ð9Þ

The prior probabilities, PðGa
j Þ ðj 2 C; a 2 f0; 1gÞ, and

the posterior probabilities, PðF j
i jGa

j Þ ði 2 f0; 1; . . .;KgÞ,
are needed to determine the category vector; and these

data can be taken directly from the training set.

Pseudocode and more details of KNN can be viewed in Zhang

and Zhou (2007). The source code of ML_KNN can be down-

loaded at http://cse.seu.edu.cn/people/zhangml/Resources.

htm#codes.

Evaluation measures

Given a multilabel test data set, v ¼ ðxi;XiÞ 1� i� nf g,
based on the definition in the previous section, the fol-

lowing popular multilabel evaluation metrics (Schapire and

Singer 2000; Zhang 2006, 2009; Zhang et al. 2009; Zhang

and Zhou 2007) are used:

(1) Hamming Loss:

Hamming loss vðtÞ ¼ 1

n

Xn

i¼1

1

C
jtðxiÞDXij ð10Þ

D represents the symmetric difference between two data

sets

(2) One-Error:

one error vðgÞ ¼ 1

n

Xn

i¼1

arg max
c2C

gðxi; cÞ
� �

62 Xi

� �
ð11Þ

(3) Coverage:

coverage vðgÞ ¼ 1

n

Xn

i¼1

max
c2Xi

rankgðxi; cÞ � 1 ð12Þ

(4) Ranking Loss:

ranking loss vðgÞ ¼ 1

n

Xn

i¼1

1

jXijj Xi j
RAðxiÞj j; where

RAðxiÞ ¼ ðt1; t2Þjgðxi; t1Þ� gðxi; t2Þ; ðt1; t2Þ 2 Xi � Xi

n o

ð13Þ
(5) Average Precision:

average prec vðgÞ ¼ 1

n

Xn

i¼1

1

jXij
X

c2Xi

APðxiÞ;

where

APðxiÞ ¼
fc0jrankgðxi; c

0Þ � rankgðxi; cÞ; c0 2 Xig
�� ��

rankgðxi; cÞ
ð14Þ

In all, Hamming loss evaluates the times that an

instance-label pair is misclassified; one-error evaluates

the times that the top-ranked label is not in the set of proper

labels of the instance; coverage evaluates the number of

steps needed, on the average, to move down the label list in

order to cover all the proper labels attached to an instance;

ranking loss examines the average fraction of label pairs

that are reversely ordered for the instance; average

precision evaluates the average fraction of labels which

are ranked above a particular label h 2 X and really are in

X. Note that, for the first four metrics, the smaller the better

and, for the last one, the larger the better performance.

Results and Discussion

In statistical prediction, the following three cross-valida-

tion methods are often used to examine a predictor for its

effectiveness in practical application: independent data set

test, subsampling test and jackknife test. However, of the

three test methods, the jackknife test is deemed the least

arbitrary that can always yield a unique result for a given

benchmark data set, as elaborated in Chou and Shen

(2010a) and demonstrated by equations 28–30 in Chou

(2011). Accordingly, the jackknife test has been widely

recognized and increasingly used by investigators to

examine the quality of various predictors (Chen and Li

2013; Esmaeili et al. 2010; Mohabatkar 2010; Sahu and

Panda 2010; Sun et al. 2012; Zhao et al. 2012; Zia Ur and

Khan 2012). However, to reduce the computational time,

we adopted the fivefold cross-validation in this study as

330 C. Huang and J.-Q. Yuan: Identifying Membrane Protein Type

123

http://cse.seu.edu.cn/people/zhangml/Resources.htm#codes
http://cse.seu.edu.cn/people/zhangml/Resources.htm#codes


done by many investigators with SVM as the prediction

engine.

Tables 2, 3, 4, 5 and 6 provide the test results based on

different K numbers. For each K number, fivefold cross-

validation is performed on the data set, and the performances

(mean ± standard deviation) out of five independent runs

are presented. As the tables show, for each evaluation

measurement, ; represents the smaller the better and :
represents the larger the better. The K number of the

multilabel-based KNN classifier is the most important

parameter that may directly affect the predicted result.

Thus, it is meaningful to see how prediction is influenced

by the parameter K on the membrane data set used. The

parameter K was increased from 1 to 20 with a step of 1.

The overall values are estimated by the method of five-

fold cross-validation. It is quite clear that the differences

between results of each multilabel evaluation metric are

negligible (Fig. 1). This fact indicates that no matter

Table 2 Performance of each compared algorithm (mean ± SD) on membrane protein data under K (1–4)

Evaluation criterion Algorithm: KNN

K = 1 K = 2 K = 3 K = 4

Hamming loss; 0.0511 ± 0.0015 0.0507 ± 0.0016 0.0507 ± 0.0016 0.0495 ± 0.0019

One-error; 0.1947 ± 0.0050 0.2114 ± 0.0084 0.2012 ± 0.0061 0.1964 ± 0.0033

Coverage; 0.4913 ± 0.0085 0.4813 ± 0.0242 0.4577 ± 0.0289 0.4470 ± 0.0215

Ranking loss; 0.0661 ± 0.0013 0.0648 ± 0.0028 0.0615 ± 0.0037 0.0600 ± 0.0025

Average precision: 0.8745 ± 0.0030 0.8687 ± 0.0055 0.8753 ± 0.0039 0.8780 ± 0.0025

Table 3 Performance of each compared algorithm (mean ± SD) on membrane protein data under K (5–8)

Evaluation criterion Algorithm: KNN

K = 5 K = 6 K = 7 K = 8

Hamming loss; 0.0502 ± 0.0006 0.0501 ± 0.0015 0.0505 ± 0.0012 0.0509 ± 0.0017

One-error; 0.2027 ± 0.0048 0.1995 ± 0.0092 0.2034 ± 0.0069 0.2037 ± 0.0058

Coverage; 0.4560 ± 0.0115 0.4484 ± 0.0212 0.4604 ± 0.0117 0.4554 ± 0.0173

Ranking loss; 0.0612 ± 0.0018 0.0601 ± 0.0032 0.0619 ± 0.0019 0.0613 ± 0.0021

Average precision: 0.8747 ± 0.0036 0.8769 ± 0.0060 0.8742 ± 0.0039 0.8747 ± 0.0035

Table 4 Performance of each compared algorithm (mean ± SD) on membrane protein data under K (9–12)

Evaluation criterion Algorithm: KNN

K = 9 K = 10 K = 11 K = 12

Hamming loss; 0.0510 ± 0.0021 0.0512 ± 0.0021 0.0509 ± 0.0010 0.0522 ± 0.0024

One-error; 0.2047 ± 0.0052 0.2065 ± 0.0079 0.2057 ± 0.0058 0.2080 ± 0.0099

Coverage; 0.4566 ± 0.0107 0.4545 ± 0.0169 0.4436 ± 0.0198 0.4525 ± 0.0176

Ranking loss; 0.0616 ± 0.0015 0.0613 ± 0.0022 0.0598 ± 0.0021 0.0611 ± 0.0021

Average precision: 0.8739 ± 0.0024 0.8735 ± 0.0046 0.8747 ± 0.0029 0.8731 ± 0.0055

Table 5 Performance of each compared algorithm (mean ± SD) on membrane protein data under K (13–16)

Evaluation criterion Algorithm: KNN

K = 13 K = 14 K = 15 K = 16

Hamming loss; 0.0524 ± 0.0017 0.0529 ± 0.0021 0.0523 ± 0.0022 0.0528 ± 0.0015

One-error; 0.2083 ± 0.0065 0.2119 ± 0.0078 0.2085 ± 0.0059 0.2117 ± 0.0074

Coverage; 0.4521 ± 0.0209 0.4549 ± 0.0239 0.4567 ± 0.0156 0.4554 ± 0.0166

Ranking loss; 0.0610 ± 0.0026 0.0614 ± 0.0034 0.0617 ± 0.0019 0.0616 ± 0.0022

Average precision: 0.8727 ± 0.0043 0.8710 ± 0.0052 0.8723 ± 0.0037 0.8710 ± 0.0040
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which K number is chosen, the prediction result is highly

robust and dependable. Considering the fact that it is a

new study focusing on this very topic, the performance is

quite encouraging in comparison with the performance of

similar methods applied in other biometric data sets

(Zhang 2006, 2009).

Table 6 Performance of each compared algorithm (mean ± SD) on membrane protein data under K(17–20)

Evaluation criterion Algorithm: KNN

K = 17 K = 18 K = 19 K = 20

Hamming loss; 0.0530 ± 0.0020 0.0537 ± 0.0018 0.0533 ± 0.0013 0.0536 ± 0.0017

One-error; 0.2136 ± 0.0103 0.2138 ± 0.0069 0.2141 ± 0.0074 0.2126 ± 0.0106

Coverage; 0.4591 ± 0.0212 0.4611 ± 0.0093 0.4617 ± 0.0207 0.4607 ± 0.0174

Ranking loss; 0.0621 ± 0.0029 0.0623 ± 0.0011 0.0625 ± 0.0026 0.0623 ± 0.0021

Average precision: 0.8699 ± 0.0062 0.8694 ± 0.0033 0.8695 ± 0.0045 0.8701 ± 0.0059
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Fig. 1 Prediction results on the membrane data set using fivefold cross-validation under different K: (a) Hamming loss, (b) one-error,

(c) coverage, (d) ranking loss, (e) average precision
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Conclusions

Prediction of membrane protein type is a meaningful and

challenging task. Even though several models have been

proposed, to the best of our knowledge, there is no algo-

rithm to deal with proteins with multiple membrane types.

However, those proteins are still important owing to the

fact that they may represent some special biological sig-

nificance worth our attention.

In this study, a new model for predicting membrane

proteins with single or multiple types was proposed. The

predictor is applicable in annotating membrane protein

types. The prediction results are listed in Tables 2, 3, 4, 5

and 6, which are sufficiently good for initial research. We

also presented the performances of the algorithm using

different K numbers in order to investigate the impact of

parameter K on the prediction performance. In the future,

we will investigate other types of algorithm for the sake of

improving the performance of the prediction.

Since user-friendly and publicly accessible web-servers

represent the future direction for developing practically

more useful models, simulated methods or predictors

(Chou and Shen 2009), we shall make efforts in our future

work to provide a web-server for the method presented in

this article.
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